COMBINATORICA Bolyai Society – Springer-Verlag

ON A MAX-MIN PROBLEM CONCERNING WEIGHTS OF EDGES

STANISLAV JENDROL', INGO SCHIERMEYER

Received July 12, 1999

The weight w(e) of an edge e=uv of a graph is defined to be the sum of degrees of the vertices u and v. In 1990 P. Erdős asked the question: What is the minimum weight of an edge of a graph G having n vertices and m edges? This paper brings a precise answer to the above question of Erdős.

1. Introduction

The weight w(e) of an edge e = uv of a graph G is defined to be the sum of degrees of the vertices u, v. This concept of the weight of an edge was introduced by Kotzig [8] who proved the following beautiful result: Every planar 3-connected graph contains an edge of weight not exceeding 13.

This result was further developed in various directions. Grünbaum [4], Jucovič [7], Borodin [1], Fabrici and Jendrol' [3] have studied inequalities for the number of edges having weight not exceeding 13 in planar 3-connected graphs. Ivančo [5] has found an analogue of Kotzig's result for graphs with minimum degree at least 3 and embedded on orientable 2-manifolds. The analogue of Kotzig's result for triangulations of orientable 2-manifolds can be found in Zaks [9].

Recently Fabrici and Jendrol' [3] proved that each 3-connected planar graph of maximum degree $\geq k$ contains a path on k vertices such that each of its vertices has degree at most 5k; the bound 5k being best possible. Enomoto and Ota [2] have proved that each planar 3-connected graph of

Mathematics Subject Classification (2000): 05C35

order at least k contains a connected subgraph on k vertices such that the degree sum of the vertices of this subgraph is at most 8k-1.

At the Fourth Czechoslovak Symposium on Combinatorics held in Prachatice, Erdős asked the question: What is the minimum weight of an edge e of a graph G having n vertices and m edges? Denote this integer by W(n,m). More precisely, for integers $n,m,n\geq 2,0\leq m\leq \binom{n}{2}$ let $\mathcal{G}(n,m)$ be the family of all graphs having n vertices and m edges. Then

$$W(n,m) = \max_{G \in \mathcal{G}(\mathbf{n},\mathbf{m})} \{ \min_{e \in E(G)} w(e) \}$$

In [6] Ivančo and Jendrol' proved some partial results. They observed that the weight of any edge e of a graph $G \in \mathcal{G}(n,m)$ cannot be larger than m+1. Because of the graph $K_{1,m} \cup \overline{K}_{n-m-1}$ we have

(1)
$$W(n,m) = m+1 \text{ for every } 1 \le m < n.$$

For $m = \binom{n}{2} - r$ with $0 \le r < n - 1$ the following theorem of Ivančo and Jendrol' [6] gives the corresponding values for W(n,m).

- **Theorem 1.1.** Let $m = \binom{n}{2} r$ with $0 \le r < n-1$. Then (i) W(n,m) = 2n-2 for r = 0 and W(n,m) = 2n-3 for r = 1;
- (ii) W(n,m) = 2n 4 for $2 \le r \le \lfloor \frac{n}{2} \rfloor$ or r = 3,
- (iii) W(n,m) = 2n-5 for $\lfloor \frac{n}{2} \rfloor < r \le \lceil \frac{n+2}{2} \rceil$ or r=6;
- (iv) W(n,m) = 2n 6 in all other cases

Graphs achieving this value can be obtained by taking a K_n and removing r independent edges or edges of a triangle (r=3) in cases (i) and (ii). In case (iii) take K_n and remove r-3 independent edges and edges of an independent triangle or edges of a $K_4(r=6)$. Finally, in case (iv) edges of a cycle of length r are deleted from K_n .

Theorem 1.2 ([6]). Let $a = \lceil \frac{1}{2}(1 + \sqrt{1 + 8m}) \rceil$ and $b = \frac{1}{2}(a^2 - a - 2m)$, let $h = \lceil \frac{1}{2}(2n - 1 - \sqrt{(2n - 1)^2 - 8m}) \rceil$ and let p, k be integers such that hk + p = m, $h + k \le n$ and $h(h - 3) < 2p \le h(h - 1)$. Let $f(n, m) = h + k + \lfloor \frac{2p}{h} \rfloor$ and q(n,m) be defined as follows

$$g(n,m) = \begin{cases} 2a - 2 \text{ if } b = 0; \\ 2a - 3 \text{ if } b = 1; \\ 2a - 4 \text{ if } 2 \le b \le \lfloor \frac{a}{2} \rfloor \text{ or } b = 3; \\ 2a - 5 \text{ if } \lfloor \frac{a}{2} \rfloor < b \le \lceil \frac{a+2}{2} \rceil \text{ or } a = 8 \text{ and } b = 6; \\ 2a - 6 \text{ in all other cases.} \end{cases}$$

Then

$$W(n,m) \ge \max\{f(n,m), g(n,m)\}.$$

Ivančo and Jendrol' [6] posed the following conjecture which we are going to prove in the next section.

Conjecture 1.3.

$$W(n,m) = \max\{f(n,m), g(n,m)\}.$$

2. Proof of the conjecture

Observe that $a = \min\{t \in IN | {t \choose 2} \ge m\}$. Thus $b \le a-2$. Hence, if G consists of a component with a vertices and n-a isolated vertices, then g(n,m) is maximum by Theorem 1.1. Therefore we may assume that any graph G^* with a larger minimum weight than G ($w^* > w = g(n,m)$, where w^* and w denote the minimum weight in G^* and in G, respectively) has at least a+1 vertices of positive degree. Further we can assume $a \ge 4$ by (1), Theorem 1.1 and Theorem 1.2.

So let $G^* = (V, E)$ be a graph with larger minimum weight than G and let $G^* \in \mathcal{G}(n, m)$. Let $I := \{v \in V \mid d(v) = 0\}$ (isolated vertices), $R := \{v \in V \setminus I \mid d(v) \leq \frac{w}{2}\}$, $S := N(R) \setminus R$ and $T := V \setminus (I \cup R \cup S)$, where N(R) denotes the set of vertices having neighbours in R.

Then by the assumption $G^*[R]$ is independent.

Proposition 2.1. $R \neq \emptyset$

Proof. Suppose $R = \emptyset$. Then $2m \ge \frac{w+1}{2} \cdot (a+1)$. We distinguish five cases. each depending on the value of b.

Case 1. If w=2a-2, b=0, then G has $2m=\frac{a(a-1)}{2}$ edges and G^* has $2m \leq \frac{2a-1}{4}(a+1)$ edges. This implies $a(a-1) \geq \left(a-\frac{1}{2}\right)(a+1)$, a contradiction. Analogously we proceed in all other cases.

Case 2. If w = 2a - 3, b = 1, then $a(a - 1) - 2 \ge (a - 1)(a + 1)$, a contradiction. Case 3. If w = 2a - 4, $2 \le b \le \lfloor \frac{a}{2} \rfloor$ or b = 3 then $a(a - 1) - 2b = a^2 - a - 2b \ge a^2 - a - 2b \ge a^2 - a - 2b \le a$

 $\left(a-\frac{3}{2}\right)(a+1)=a^2-\frac{a}{2}-\frac{3}{2}$, a contradiction.

Case 4. If w = 2a - 5, $\lfloor \frac{a}{2} \rfloor < b \le \lceil \frac{a+2}{2} \rceil$ or a = 8, b = 6 then $a(a-1) - 2b = a^2 - a - 2b \ge (a-2)(a+1) = a^2 - a - 2$, a contradiction.

Case 5. If w = 2a - 6 then $a(a-1) - 2b = a^2 - a - 2b \ge \left(a - \frac{5}{2}\right)(a+1) = a^2 - \frac{3}{2}a - \frac{5}{2}$, a contradiction since $2b > 2\lceil \frac{a+2}{2} \rceil \ge a+2$.

Proposition 2.2. $T = \emptyset$.

Proof. Suppose $T \neq \emptyset$. Then $d(v) \geq \left\lceil \frac{w+1}{2} \right\rceil$ for all $v \in S \cup T$ and $N(T) \subseteq S \cup T$. This implies $|S \cup T| \geq \left\lceil \frac{w+3}{2} \right\rceil$. We now estimate the degree-sums for the vertices of $S \cup T$. From above we obtain $2m \geq \sum_{v \in S \cup T} d(v) \geq \left\lceil \frac{w+3}{2} \right\rceil \left\lceil \frac{w+1}{2} \right\rceil$.

Analogously as in the previous proposition we distinguish five cases:

Case 1. If
$$w = 2a - 2, b = 0$$
 then $a(a - 1) \ge \sum_{v \in S \cup T} d(x) \ge \left\lceil \frac{w + 3}{2} \right\rceil \left\lceil \frac{w + 1}{2} \right\rceil \ge (a + 1)a$, a contradiction.

Case 2. If w=2a-3, b=1 then $a(a-1)-2 \ge a(a-1)$, a contradiction.

Case 3. If w = 2a - 4, $2 \le b \le \lfloor \frac{a}{2} \rfloor$ or b = 3, then $a(a - 1) - 2b = a^2 - a - 2b \ge a(a - 1) = a^2 - a$, a contradiction.

Next observe that there exists an edge uv with $u \in R, v \in S$ such that $d(u) + d(v) \ge w + 1$.

Case 4. Let
$$w = 2a - 5$$
, $\lfloor \frac{a}{2} \rfloor < b \le \lceil \frac{a+2}{2} \rceil$ or $a = 8, b = 6$. Then $a(a-1) - 2b = a^2 - a - 2b = 2m \ge \sum_{x \in S \cup T \setminus \{v\}} d(x) + d(u) + d(v) \ge (\lceil \frac{w+3}{2} \rceil - 1) \lceil \frac{w+1}{2} \rceil + d(u) + d(v) \ge ((a-1)-1)(a-2) + (2a-4) = a^2 - 2a$, a contradiction since $b > \frac{a}{3}$.

Case 5. Let w=2a-6. Analogously as in the previous case we get $a(a-1)-2b=a^2-a-2b \geq ((a-1)-1)(a-2)+(2a-5)=a^2-2a-1$, a contradiction since $2b>2\left\lceil\frac{a+2}{2}\right\rceil \geq a+2$.

Hence we may assume from now on that $V(G^*) = R \cup S \cup I$. Let r := |R| and s := |S|. By the assumption $d(v) \le \frac{w}{2}$ for all $v \in R$ and $d(v) \ge \frac{w+1}{2}$ for all $v \in S$ we conclude that $r \ge 3$. For given n, m with $m = \binom{s}{2} + s \cdot r - q, 0 \le q < s$, let $\mathcal{G}(r, s, q) \subseteq \mathcal{G}(n, m)$ be the class of all graphs such that G[R] is independent and let

$$W(r, s, q) = \max_{G \in \mathcal{G}(\mathbf{r}, \mathbf{s}, \mathbf{q})} \{ \min_{e \in E(G)} w(e) \}$$

Proposition 2.3.

$$W(r, s, q) = \begin{cases} 2s + r - 1, q = 0\\ 2s + r - 2, 1 \le q \le \frac{s}{2}\\ 2s + r - 3, \frac{s}{2} < q < s \end{cases}$$

Graphs achieving this value can be obtained by taking a K_s and removing q independent edges (K_s-qK_2) or q edges of a cycle (K_s-C_q) , respectively. **Proof.** Suppose there exists a graph $G \in \mathcal{G}(r,s,q)$ with a minimum weight w^* larger than W(r,s,q). Since G[R] is independent we have

$$m = \sum_{v \in S} d_R(v) + \frac{1}{2} \sum_{v \in S} d_S(v) = \sum_{v \in S} d(v) - \frac{1}{2} \sum_{v \in S} d_S(v) \ge \sum_{v \in S} d(v) - \binom{s}{2}.$$

Here $d_X(v)$ denotes the number of neighbours of the vertex v in the set X.

Case q=0.

Then $w^* \ge 2s + r$. Let uv be an edge of G with $u \in R, v \in S$ and having the weight w^* . Then $d(u) + d(v) = w(uv) \ge 2s + r$. Now $d(u) = d_S(u) \le s$ implies $d(v) \ge (2s + r) - s = s + r$ for all $v \in S$.

Thus $\sum_{v \in S} d(v) \ge s(s+r)$ and $m \ge s(s+r) - {s \choose 2} = s \cdot r + {s+1 \choose 2} > s \cdot r + {s \choose 2} = m$, a contradiction.

Case $1 \le q \le \frac{s}{2}$.

Then $w^* \ge 2s + r - 1$. This time $d(v) \ge (2s + r - 1) - s = s + r - 1$ for all $v \in S$. Thus $\sum_{v \in S} d(v) \ge s(s + r - 1)$ and $m \ge s(s + r - 1) - \binom{s}{2} = s \cdot r + \binom{s}{2} > s \cdot r + \binom{s}{2} - q = m$, a contradiction, since $q \ge 1$.

Case $\frac{s}{2} < q < s$.

Then $w^* \ge 2s + r - 2$. Suppose $G[R \cup S]$ is not complete. Then there is a vertex $u \in R$ with $d_s(u) = s - k$ for some $1 \le k \le s - 1$ (since $N_S(u) \ne \emptyset$ for all $u \in R$) implying $s \ge 2$.

Then $d(v) \ge (2s+r-2)-(s-k)$ for all $v \in N_S(u)$ and

$$\sum_{v \in S} d(v) = \sum_{v \in N_S(u)} d(v) + \sum_{v \in S \setminus N_S(u)} d(v)$$

$$\ge (s - k)(s + r + k - 2) + k(s + r - 2)$$

$$= s(s + r - 2) + k(s - k) > s(s + r - 2) + s - 1.$$

Thus

$$m \ge s(s+r-1) - 1 - \binom{s}{2}$$
$$= s \cdot r + \binom{s}{2} - 1 > s \cdot r + \binom{s}{2} - q = m,$$

a contradiction, since q > 1.

For given m, n we will now compare the weights w(G(r, s, q)) for all possible triples r, s, q.

Case 1. Let F(r,s,q) be a graph with w(F(r,s,q)) = f(n,m). Note that s is minimum in this case. We now examine for which values of t we have $w(F(r,s,q)) \ge w(G(r-2t,s+t,q'))$. Depending on q we consider the inequality

$$w(F(r,s,q)) \le w(G(r-2t,s+t,0)).$$

Subcase 1.1. q=0. We have $w(F(r,s,0))=2s+r-1 \ge w(G(r-2t,s+t,q'))$ for arbitrary q' and consider the inequality

$$sr + \binom{s}{2} \le (s+t)(r-2t) + \binom{s+t}{2}$$
$$\iff t(3t+2s+1-2r) \le 0.$$

Since t > 0 this implies

$$3t + 2s + 1 - 2r \le 0$$

$$\iff t \le \frac{2r - 2s - 1}{2}.$$

Subcase 1.2. $1 \le q \le \frac{s}{2}$.

We have $w(F(r,s,q)) = 2s + r - 2 \ge w(G(r-2t-1,s+t,q'))$ for arbitrary q' and consider the inequality

$$sr + {s \choose 2} - 1 \le (s+t)(r-2t-1) + {s+t \choose 2}$$

 $\iff t(3t+2s+3-2r) + 2s - 2 < 0.$

Since t > 0 this implies

$$3t + 2s + 3 - 2r \le 0$$

$$\iff t \le \frac{2r - 2s - 3}{3}.$$

Note that any "solution" for t and q=1 remains a "solution" for t and $1 \le q \le \frac{s}{2}$.

Subcase 1.3. $\frac{s}{2} < q < s$.

We have $w(F(r,s,q)) = 2s + r - 3 \ge w(G(r-2t-2,s+t,q'))$ for arbitrary q' and consider the inequality

$$sr + {s \choose 2} - \frac{s+1}{2} \le (s+t)(r-2t-2) + {s+t \choose 2}$$

 $\iff t(3t+2s+5-2r) + 4s - 2\frac{s+1}{2} \le 0.$

Since t > 0 and $s \ge 1$ this implies

$$3t + 2s + 5 - 2r \le 0$$

$$\iff t < \frac{2r - 2s - 5}{3}.$$

Note that any "solution" for t and $q = \lceil \frac{s+1}{2} \rceil$ remains a "solution" for t and $\frac{s}{2} < q < s$. For all three cases considered above any t satisfying $1 \le t$

 $t < \frac{2r-2s-5}{3}$ is a common solution. Moreover, this implies $r-s \ge 5$. Hence for all r,s,q with $r-s \ge 5$ we have $w(G(r,s,q)) \ge w(G(r',s+1,q'))$, where $rs+\binom{s}{2}-q=r'(s+1)+\binom{s+1}{2}-q'$.

Now for s increasing r is non-increasing. Hence, if w(G(r',s',q')) > w(F(r,s,q)) then $r'-s' \le r-s \le 4$.

Case 2. Let H(a,b) be a graph with w(H(a,b)) = g(n,m). For convenience we set a=s,b=q and examine for which values of t we have $w(G(r',s-t,q')) \le w(H(s,q))$. Note that s is maximum in this case.

Subcase 2.1. $0 \le q \le 1$.

We consider the inequality $\binom{s}{2} - q \le (s-t)(2t-1) + \binom{s-t}{2} - q$. Then w(H(s,q)) = 2s - 2 - q = w(G(2t-1,s-t,q')) for $q' \ge q$. Moreover, for $r' \le 2t - 2$ we have $w(G(r',s-t,q')) \le 2(s-t) + r' - 1 \le 2s - 3 \le 2s - 2 - q$ for any $q' \ge 0$.

Subcase 2.2. $2 \le q \le 3$.

We consider the inequality $\binom{s}{2} - q \le (s-t)(2t-2) + \binom{s-t}{2} - 1$ for $2 \le q \le \frac{s}{2}$ or q = 3 (and s = 5). Then $w(H(s,q)) = 2s - 4 \ge w(G(2t-2,s-t,q'))$ for any $q' \ge 1$. Moreover, for $r' \le 2t - 3$ we have $w(G(r',s-t,q')) \le 2(s-t) + r' - 1 \le 2s - 4$ for any $q' \ge 0$.

Subcase 2.3. $4 \le q \le 6$.

We consider the inequality $\binom{s}{2}-q \leq (s-t)(2t-3)+\binom{s-t}{2}-1$ Since $q \leq s-2$ we have $q \leq \left\lceil \frac{s+2}{2} \right\rceil$ for q=4 or q=5. For q=6 we either have $q \leq \left\lceil \frac{s+2}{2} \right\rceil$ for $s \geq 9$ or s=8, q=6. Then $w(H(s,q))=2s-5 \geq w(G(2t-3,s-t,q'))$ for any $q' \geq 1$. Moreover, for $r' \leq 2t-4$ we have $w(G(r',s-t,q')) \leq 2(s-t)+r'-1 \leq 2s-5$ for any $q' \geq 0$.

Subcase 2.4. $q \ge 7$.

We consider the inequality $\binom{s}{2} - q \le (s-t)(2t-4) + \binom{s-t}{2} - 1$. Then $w(H(s,q)) \ge 2s - 6 \ge w(G(2t-4,s-t,q'))$ for any $q' \ge 1$. Moreover, for $r' \le 2t - 5$ we have $w(G(r',s-t,q')) \le 2(s-t) + r' - 1 \le 2s - 6$ for any $q' \ge 0$.

The four inequalities from above can be written as $\binom{s}{2} - q \le (s-t)(2t-k) + \binom{s-t}{2} - \min(1,q)$ for $k = 1, 2, 3, 4 \iff t(3t-2s-2k-1) + 2(sk-q+\min(1,q) \ge 0$. Since t > 0 and $sk-q+\min(1,q) > 0$ we have $3t-2s-2k-1 < 0 \iff t < \frac{2s+2k+1}{3}$.

Suppose now that for some $t \ge \frac{2s+2k+1}{3}$ we have $\binom{s}{2} - q \ge (s-t)(2t-k) + \binom{s-t}{2}$. If w(G(r',s-t,q')) > w(H(q,s)), then we must have $r' \ge 2t-k$. Therefore, $r'-s' \ge (2t-k) - (s-t) = 3t-s-k \ge s+k+1 \ge 6$ (since $s=a \ge 4$). Hence, if w(G(r',s',q')) > w(H(q,s)) then $r'-s' \ge 6$.

Since r', s' cannot satisfy both $r' - s' \le 4$ (Case 1) and $r' - s' \ge 6$ (Case 2) we conclude that $W(n, m) = \max\{w(F(q, r, s)), w(H(q, s))\} = \max\{f(n, m), g(n, m)\}$. This completes the proof of the conjecture.

3. The values of W(n,m)

Following the proof of the conjecture we have proved the following proposition for two constants $c_1 = 37$ and $c_2 = 9$.

Proposition 3.1. There are two constants $c_1, c_2 > 0$ such that

$$W(n,m) = f(n,m) \text{ for all } m \text{ with } 1 \le m \le \frac{9n^2 - c_1 n}{50},$$

$$W(n,m) = g(n,m)$$
 for all m with $\binom{n}{2} \ge m \ge \frac{9n^2 + c_2n}{50}$.

With Theorem 1.1 and Theorem 1.2 this implies the following corollary.

Corollary 3.2.

$$W(n,m) = f(n,m) \text{ for all } m \text{ with } 1 \le m \le \max\left(n-1, \frac{9n^2 - c_1 n}{50}\right),$$

$$W(n,m) = g(n,m) \text{ for all } m \text{ with } \binom{n}{2} \ge$$

$$m \ge \min\left(\binom{n}{2} - n + 2, \frac{9n^2 + c_2 n}{50}\right).$$

For the remaining values of m (for given n) a frequent change of f(n,m) or g(n,m) being maximum can be observed. Hence, for growing n and $1 \le m \le \max\left(n-1,\frac{9n^2-c_1n}{50}\right)$, the graph of W(n,m) has a sawtooth-shape. For $1 \le m \le 2n-3$ we obtain

$$W(n,m) = \begin{cases} m+1, 1 \le m \le n-1 \\ \left| \frac{m+5}{2} \right|, n \le m \le 2n-3 \end{cases}$$

Obviously, $W(n,n-1)-W(n,n)=n-\left\lfloor\frac{n+5}{2}\right\rfloor=\left\lfloor\frac{n-4}{2}\right\rfloor$. Further evaluation of W(n,m) shows further jumps.

Finally, by analysing f(n,m) and g(n,m), one can show that for each pair of n,k with $n \ge 2$ and $2 \le k \le 2n-2$ there exists m with $1 \le m \le \binom{n}{2}$ such that W(n,m)=k.

Observe that $f(n, m+1) - f(n, m) \le 1$ and $g(n, m+1) - g(n, m) \le 1$ for all $n \ge 2$ and $1 \le m \le \binom{n}{2} - 1$. Hence, with f(n, 1) = g(n, 1) = 2 and $f(n, \binom{n}{2}) = g(n, \binom{n}{2}) = 2n - 2$, for both f(n, m) and g(n, m) all values of k for $2 \le k \le 2n - 2$ are achieved for suitable graphs.

Acknowledgement. A support of the Slovak VEGA grant 1/4377/97 is acknowledged.

References

- O. V. BORODIN: Computing light edges in planar graphs, in: Topics in Combinatorics and Graph Theory (eds. R. Bodendiek and R. Henn), Physica-Verlag, Heidelberg, 1990, 137–144.
- [2] H. ENOMOTO and K. OTA: Connected subgraphs with small degree sum in 3-connected planar graphs, *J. Graph Theory*, **30** (1999), 191–203.
- [3] I. FABRICI and S. JENDROL': Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, *Graphs and Combinatorics*, **13** (1997), 245–250.
- [4] B. GRÜNBAUM: Acyclic colorings of planar graphs, Israel J. Math., 14 (1973), 390– 408
- [5] J. IVANČO: The weight of a graph, Ann. Discrete Math., **51** (1992), 113–116.
- [6] J. IVANČO and S. JENDROL': On extremal problems concerning weights of edges of graphs, Colloquia Mathematica Societatis János Bolyai, 60 (1991), 399–410.
- [7] E. Jucovič: Strengthening of a theorem about 3-polytopes, Geometriae Dedicata, 13 (1974), 233–237.
- [8] A. Kotzig: Contribution to the theory of Eulerian polyhedra, *Math. Slovaca*, **5** (1955) 111–113.
- [9] J. Zaks: Extending Kotzig's theorem, Israel J. Math, 45 (1983), 281–296.

Stanislav Jendrol'

Department of Geometry and Algebra P. J. Šafárik University 04154 Košice, Slovak Republic jendrol@kosice.upjs.sk

Ingo Schiermeyer

Fakultät für Mathematik und Informatik Technische Universität Bergakademie Freiberg D-09596 Freiberg, Germany schierme@math.tu-freiberg.de